

A.D.M College For Women (Autonomous) Nationally Accredited with ' A' Grade by NAAC (Cycle-III)

Nationally Accredited with ' A' Grade by NAAC (Cycle-III) Nagapattinam -611 001 TamilNadu.

M.Sc. Mathematics

Employability

Entrepreneurship

Skill Development

manni maaa

Name of the	Course	Title of the Course	Employability	Entrepreneurship	Skill
Programme	Code				Development
		MBE IV -Optimization Techniques	~		
		EC I- Advanced Numerical Analysis			✓
		CC XIII – Probability Theory	✓		
	PGMB	Real Analysis	✓		
	PGMA	Algebra	✓		
M.Sc. Mathematics	PGMC	Ordinary Differential Equation	~		
	PGMD	Advanced Graph Theory	✓	✓	✓
	PGME1	Advanced Numeric Analysis			✓
	PGME	Complex Anal;ysis	✓		
	PGMF	Linear algebra	×		
	PGMG	Partial Differential Equations	~		✓

	PGMH	Classical Dynamics	✓		✓
	PGME2	Fuzzy Sets and its Applications	~	~	✓
	PGMI	Measure and Integration	✓		✓
	PGMJ	Topology	✓		
	РСМК	Integral Equations and Transforms	✓		
M.Sc.	PGME3	Mathematical Modeling	✓	\checkmark	✓
Mathematics	PGME4	Advanced Operations Research		\checkmark	✓
	PGML	Functional analysis	✓		
	PGMM	Advanced Probability Theory	✓		✓
	PGMN	Fluid Dynamics			✓
	PGME5	Differential Geometry	✓		
	PGMP	Project	~		✓

Semester-III/	Optimization Technique	Course Code: MME4		
Elective Course-IV (EC IV)				
Instruction Hours: 6	Credits: 4	Exam Hours: 3		
Internal Marks:25	External Marks:75	Total Marks: 100		

	K 1 - Acquire/ Remember						
Cognitive	K2 - Understand						
Level	K3 - Apply						
Lever	K4 - Evaluate						
	K5 - Analyze						
	K6 - Create						
	The Course aims						
Course	• To introduce the applications and algorithms in the field	l of					
Objectives	operations research.						
	• To understand the OR techniques in business and management						
	problems.						
	• To know the optimization techniques like integer programming,						
	dynamic programming, decision theory and game theory.						
	• To learn the concept of inventory models.						
	• To study the non-linear programming algorithms.						
UNIT	CONTENT	HOURS					
UNIT I	Integer Linear Programming	18					
	Introduction - Illustrative Applications – Integer						
	Programming Solution Algorithms – Branch and Bound						
	Method – Zero – One Implicit enumeration Algorithm –						
	Cutting Plane Algorithm						
UNIT II	Dynamic (Multistage) Programming : Elements of the	18					
	DP Model:The Capital Budgeting Example-More on the						
	Definition of the State-Examples of DP Models and						
	Computations-Problem of Dimensionality in Dynamic						

	Programming – Solution of Linear Programs by Dynamic	
	Programming.	
UNIT III	Inventory Models : The ABC Inventory System – A	18
	<mark>Generalized Inventory Model – Deterministic Models.</mark>	
UNIT IV	Queueing Models : Basic Elements of the Queueing	18
	Model – Role of the Poisson and Exponential	
	Distributions -Pure Birth and Pure Death Processes-	
	Queues with Combined Arrivals and Departures-	
	Specialized Poisson Queues.	
UNIT V	Nonlinear Programming Algorithms	18
	Unconstrained Nonlinear Algorithm.	

Text Books:

1.Hamdy A. Taha , Operations Research, Prentice hall of India, Sixth Edition.

Reference Books:

1. O.L. Mangasarian, Non Linear Programming, McGraw Hill, New York.

2. S. MoktherBazaraa and C.M. Shetty, Non Linear Programming, Theory and Algorithms, Willy, New York .

3. Prem Kumar Gupta and D.S. Hira, Operations Research-An Introduction, S.Chand and Company.

Web – Resources:

http://www.ru.ac.bd/stat/wp-

content/uploads/sites/25/2019/03/405 01 Srinivasan Operations-Research -

Principles-and-Applications-Prentice-Hall-of-India-2010.pdf

Course Outcomes

On Completion of the Course, Students should be able to

- CO1 : write the algorithms in integer programming problem.
- CO2 : apply the OR techniques in various models.
- CO3 : analyse the problems on decision theory and game theory
- CO4 : optimize solutions of inventory models.
- CO5 : intrepret the concepts of non-linear programming problems.

Semester-I /		Advanced Numerical Analysis	Course Code: MME1
Elective	Course-I		
(EC)			

Mapping of Course outcomes with Programme Outcomes/ Programme Specific Outcomes

CO/PO	РО					PSO				
	1	2	3	4	5	1	2	3	4	5
C01	S	S	S	S	S	S	S	S	S	S
CO2	S	S	S	S	S	S	S	S	S	S
CO3	S	S	S	S	S	S	S	S	S	S
CO4	S	S	S	S	S	S	S	S	S	S
CO5	S	S	S	S	S	S	S	S	S	S

S - Strongly Correlated

M - Moderately Correlated

W-Weakly Correlated

N – No Correlation

Instruction Hours:	Credits: 4	Exam Hours: 3
Internal Marks:25	External Marks:75	Total Marks: 100

Text Books:

	V 1 Asy is (Descendence)						
	K 1 - Acquire/ Remember						
Cognitive	K2 - Understand						
Level	K3 - Apply K4 - Evaluate						
	K5 - Analyze						
	K6 – Create						
	The Course aims						
Course	• To demonstrate the concepts of Numerical methods.						
Objectives	• To study the iteration methods for solving matrices.						
	To know about interpolations.						
	• To learn the methods based on interpolation.						
	• To study the ordinary differential equations numerically	7.					
UNIT	CONTENT	HOURS					
UNIT I	Transcendental and Polynomial Equations:	18					
	Introduction – Bisection Method – Iteration Methods						
	Based on First Degree Equation – Iteration Methods						
	Based on Second Degree Equation – Rate of						
	Convergence – Polynomial Equations.						
UNIT II	System of Linear Algebraic Equations and Eigen	18					
	Value Problems: Iteration Methods - Eigen values and						
	Eigenvectors: Jacobi Method for Symmetric Matrices –						
	Givens Method for Symmetric Matrices – Power Method.						
UNIT III	Interpolation and Approximation: Higher Order	18					
	Interpolation - Hermit Interpolations – Bivariate						
	Interpolation – Least Squares Approximation						
UNIT IV	Differentiation and Integration: Methods Based on	18					
	Differentiation and integration. Methods Dased on						
	Interpolation – Extrapolation Methods – Partial						
	_						
	Interpolation – Extrapolation Methods – Partial						
	Interpolation – Extrapolation Methods – Partial differentiation – Numerical Integration – Methods Based						
UNIT V	Interpolation – Extrapolation Methods – Partial differentiation – Numerical Integration – Methods Based on Interpolation – Methods Based on Undetermined	18					

1.M.K.Jain, S.R.K. Iyengar and R.K. Jain, Numerical Methods for Scientific and

Engineering Computation , New Age International (P) Limited , New Delhi,2003.

Reference Books:

1.S.S. Sastry, Introductory Methods of Numerical Analysis, Prentice Hall of India PVT Limited, New Delhi, 1994.

2.Joe D. Hoffman, Numerical Methods for Engineers and Scientists, Second Edition, CRC Press, 2001.

Web – Resources:

1<u>https://web.njit.edu/~jiang/math614/atkinson2.pdf</u> 2.<u>https://www.epfl.ch/labs/anchp/index-html/teaching/advancedna/</u>

Course Outcomes

On Completion of the Course, Students should be able to

- CO1 :Solve transcendental and polynomial equations.
- CO2 :Determine the solution of linear equations.
- CO3 :Evaluate the higher order interpolation.
- CO4 :Estimate the numerical differentiation and integration.
- CO5 :Interpret the methods of solving integration numerically

Mapping of Course outcomes with Programme Outcomes/ Programme Specific Outcomes

CO/PO	PO]	PSO			
	1	2	3	4	5	6	1	2	3	4	5	6
C01	М	S	М	S	М	М	М	М	S	S	М	S
CO2	М	S	М	S	М	М	М	М	S	S	М	М
CO3	S	S	S	S	М	М	М	М	S	S	М	S
CO4	М	S	S	М	S	М	S	S	S	S	S	S
CO5	S	S	М	М	М	М	S	М	S	М	S	S

S - Strongly Correlated

- M Moderately Correlated
- W-Weakly Correlated
- N No Correlation

Semester-IV /Probability TheoryCourse Code: MMM

Core Course-XIII (CC)		
Instruction Hours: 6	Credits: 5	Exam Hours: 3
Internal Marks:25	External Marks:75	Total Marks: 100

Cognitive Level	 K 1 - Acquire/ Remember K2 - Understand K3 - Apply K4 - Evaluate K5 - Analyze K6 - Create The Course aims								
Course	• To understand the fields, σ -fields and random variables.								
Objectives	 To provide the knowledge of the expectations, convergence in variables. 								
	 To learn the estimation 								
	 To gain knowledge about MGF and limit theorems. 								
	 To study the different types of distributions 								
UNIT	CONTENT	HOURS							
UNIT I	Axioms Of Probability–sample space and events–Axioms	18							
	of probability-some propositions-equally likely								
	outcomes –probability as a continuous set function –								
	probability as a measure of belief								
UNIT II	Conditional Probability and Independence–Conditional probabilities – Baye's formula – Independent events – P(.IF) is a probability.	18							
UNIT III	Random variables–Distribution functions–Discrete	18							
	random variables – Expected value – Expectation of a function								
	<mark>of random variable</mark> –Variance–Bernoulli and Binomial random variables								
UNIT IV	Continuous random variables – Expectation and variance of continuous random variables– The uniform and normal random variables–Exponential random variables–Other Continuous Distribution.	18							
UNIT V	Jointly Distributed Random Variables – Joint distribution functions–Independent random variables–Their sums–	18							

Text Books:

• Sheldon Ross, A first course in Probability, Maxwell MacMillan international edition, Fifth edition Newyork, 1989.

Reference Books:

- Chandra T.K and Chatterjee D. (2003), A first course in probability , 2nd Edition, Narosa Publishing House, New Delhi.
- Kailai Chung and Farid Aitsahlia, Elementary Probability, Springer Verlag 2003, New York.
- Capinski and Thomasz Zastawniak(2003), Probability through problems, Springer Verlag, New York.
- Sharma .T.K(2005), A text book of probability and theoretical distribution, Discovery publishing house, New Delhi.

Web – Resources:

- <u>https://ieeexplore.ieee.org/document/6813036?arnumber=6813036</u>
- <u>https://www.degruyter.cpcom/document/doi/10.1515/9783110466195/</u> <u>html?lang=en</u>

Course Outcomes

On Completion of the Course, Students should be able to

- CO1 : interpret the field and σ fields
- CO2 : analyze the probability spaces.
- CO3 : apply the concepts of random variables and distributions.
- CO4 : describe the ideas of expectation and characteristic functions
- CO5 : demonstrate the convergence of random variables

Mapping of Course Outcomes with Programme Outcomes / Programme Specific Outcomes

CO/PO	РО				PSO					
	1	2	3	4	5	1	2	3	4	5
C01	S	S	S	S	S	S	S	S	S	S
CO2	S	S	S	S	S	S	S	S	S	S
CO3	S	S	S	S	S	S	S	S	S	S
CO4	S	S	S	S	S	S	S	S	S	S
CO5	S	S	S	S	S	S	S	S	S	S

- **S Strongly Correlated**
- **M** Moderately Correlated
- W-Weakly Correlated
- N No Correlation